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Why Hamiltonians?

Hamiltonian picture is more natural than Lagrangian in the
AMO/condensed matter settings where quantum simulation is
done.

Jordan-Wigner transform allows interaction Hamiltonian for a
lattice gauge theory to be mapped onto a Hamiltonian for spin
interactions.

The Hamiltonian picture allows dynamical, real-time descriptions
of physical processes.

The challenge: How can the Hamiltonian of QCD be mapped
onto a real quantum simulator?

How can this be used to compute the quark and gluon content of
hadrons?

The proposal: Light cone quantization offers a simpler
Hamiltonian formulation of QCD and other gauge theories.

Though it is geared towards momentum space rather than
configuration space.
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What is light cone quantization?

Define light cone coordinates:

x+ = t + z

x− = t− z

x⊥ = (x, y)

Off-diagonal metric:
s2 = x+x− − x2

⊥.

The “energy” P− generates
translations in the “time” x+.
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Why light cone quantization?

The Poincare group generators look like this:
Translations

P+ = P 0 + P z

P− = P 0 − P z

P⊥ = (Px, Py)

Boosts

B⊥1 = (K1 + J2)

B⊥2 = (K2 − J1)

K3

Rotations

S⊥1 = (K1 − J2)

S⊥2 = (K2 + J1)

J3

The operators J3, P⊥, and B⊥ generate a Galilean subgroup in
the transverse plane.

The longitudinal boost K3 merely rescales all these operators.

The theory is invariant under both K3 and the Galilean subgroup.

This produces non-relativistic group structure on the light
cone.

Promising if we want to use a non-relativistic Hamiltonian to
simulate QCD!
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Why light cone quantization?

The dispersion relation includes no square roots:

i∂+|Ψ〉 = p−|Ψ〉 =

(
m2 + p2

⊥
p+

)
|Ψ〉

A remarkably similar structure to the non-relativistic dispersion
relation in two dimensions.

The true Hamiltonian of a field theory is more complicated—it
involves integrals of fields.

But in light cone quantization, the full Hamiltonian is the sum of
free and interaction parts:

H = T + U = T + (V + F + S + C)

See Brodsky et al., Phys. Rep. 301 (1998) for full description of the terms.
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Fock state decomposition

Fock space decomposition gives us a particle content picture.

This picture falls naturally out of light cone quantization, and is
invariant under boosts and the Galilean subgroup.

Fock space is the basis we want to use if we’re aiming to compute
the quark/gluon content of a hadron.

In light cone quantization, the Schwinger model bound state has a
very simple particle content: it’s just an electron and a positron!
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On a computer: discretized light cone quantization

Traditionally, computations are done in momentum space.

Periodic boundary conditions are used, too.

This ensures conservation of charges (energy, color, etc.).

P+ has a discrete spectrum; choosing an eigenvalue for P+ sets
the harmonic resolution and truncates the Fock space.

One constructs all color-singlet states for some P+ and then
diagonalizes the Hamiltonian P−.

p+ →∞ returns the continuum limit.

The difficulty: a harmonic resolution as low as 5 can produce a
Hilbert space as big as 1020 dimensions.

This is not a tractable problem on a classical computer.
Can a quantum computer make this more tractable?
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Challenges

DLCQ computations are traditionally done in momentum space.
Can quantum simulations be done in momentum space?

With periodic boundary conditions?

Can the state space of an AMO or condensed matter system
simulate a truncated Fock space?
Is this a problem better posed for a universal quantum computer?
(e.g., running a fast matrix diagonalization algorithm?)
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